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Abstract

New algorithms for solving algebraic Riccati equations (ARE) which arise in fluid queues
models are introduced. They are based on reducing the ARE to a unilateral quadratic matrix
equation of the kind AX2 + BX + C = 0 and on applying the Cayley transform in order to
arrive at a suitable spectral splitting of the associated matrix polynomial. A shifting technique
for removing unwanted eigenvalues of modulus 1 is complemented with a suitable parametri-
zation of the matrix equation in order to arrive at fast and numerically reliable solvers based on
quadratically convergent iterations like logarithmic reduction and cyclic reduction. Numerical
experiments confirm the very good performance of these algorithms.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let m, n be positive integers and let A ∈ Rm×m, B ∈ Rm×n, C ∈ Rn×m, D ∈
Rn×n, be such that the matrix
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M =
[
D −C

−B A

]
(1)

is an irreducible singular M-matrix. This means that M = αI −N where N has
nonnegative entries and α = ρ(N), where ρ(N) is the spectral radius of N . Under
this assumption, D and A are M-matrices and C and B are nonnegative matrices.

In the analysis of two-dimensional continuous-time Markov processes, called fluid
queues, a crucial step is to compute the element-wise minimal nonnegative solution
S ∈ Rm×n of the nonsymmetric algebraic Riccati matrix equation

XCX − AX −XD + B = 0. (2)

This solution provides important information about the state probabilities of the
model. To this regard, we refer the reader to the papers [1–4]; the existence of the
minimal solution S is established in [5] and it is shown in [6] that S > 0 under
the irreducibility assumption on the matrix M .

Several methods have been designed for computing S, in particular in the papers
[7,5,8,4]. In [4] Ramaswami has observed that, under suitable conditions, S can be
obtained as a submatrix of the minimal nonnegative solution of the unilateral quadratic
matrix equation

A2Y
2 + A1Y + A0 = 0, (3)

where, for a suitable parameter t ,

A2 =
[

1
2I 0
0 0

]
, A1 =

[− 1
2 (I + tA) 0
tC −I

]
, A0 =

[
0 1

2 tB

0 −tD + I

]
.

In this way, one can use well known iterative techniques specially designed for (3).
The reduction proposed by Ramaswami is not the only possible one, but it has the

advantage of splitting into two sets the roots of the matrix polynomial

A(z) = A2z
2 + A1z+ A0

associated with the matrix equation (3): a set made up by n+m roots inside the
closed unit disk of which m are equal to zero, and a set of n+m roots outside the
open unit disk of which n are equal to infinity. We refer the reader to [9] concerning
properties of matrix polynomials. In the case where the 2(m+ n) roots of the matrix
polynomial A(z) can be split into two sets, a set made up by m+ n roots inside
the closed unit disk and a set of m+ n roots outside the open unit disk, we say
that A(z) has a splitting with respect to the unit circle. This property allows one to
solve the unilateral matrix equation (3) by means of the most efficient algorithms like
logarithmic reduction (LR) [10] and cyclic reduction (CR) [11]. The convergence of
these two algorithms is generally quadratic. More precisely, denoting by ξ � 1 the
maximum ratio of the moduli of them+ n roots in the closed unit disk and them+ n

roots outside the open unit disk (isolation ratio), the approximation error after i steps
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is bounded by ξ2i if ξ < 1. If ξ = 1 the convergence is expected to be linear with
rate 1/2 [12].

Concerning spectral properties, Guo [5] has shown that the eigenvalues of the
matrix

H =
[−D C

−B A

]
, (4)

are split with respect to the imaginary axis, i.e.,m eigenvalues have nonnegative real
part, and n eigenvalues have nonpositive real part. The matrixH is very important in
the classical theory of algebraic Riccati equations [13], in fact all the solutions of the
equation (2) can, in principle, be recovered from the invariant subspaces of H .

In this paper we present a different reduction of the nonsymmetric algebraic Riccati
equation to a unilateral quadratic equation, whose associated matrix polynomial has a
set of roots which is the union of the set of the eigenvalues ofH , and of the set made up
by m null roots and by n roots at infinity. Indeed, the roots of this matrix polynomial
different from zero and infinity have a splitting with respect to the imaginary axis.
To achieve the splitting with respect to the unit circle needed for the convergence of
LR and CR, we apply the Cayley transform to our unilateral matrix equation. After
this transformation, the roots at 0 and at infinity of the original matrix polynomial
are mapped to 1 and to −1, respectively, so that the isolation ratio of this splitting is
ξ = 1. For reducing the isolation ratio, we apply the technique of the selective shift of
the spectrum introduced in [14] and generalized in [15,16], in order to remove the two
unwanted multiple roots from 1 and −1 to zero and to infinity, respectively. In this way,
the new equation obtained after the shift has roots with isolation ratio ξ < 1 provided
that the matrixH has no pure imaginary eigenvalues so that the application of cyclic
reduction or of logarithmic reduction yields a quadratically convergent algorithm. The
combination of the Cayley transform with the shift technique is complemented with
the use of a suitable parameter introduced for increasing the numerical performance
of the computation.

In certain problems typically encountered in Markov chains, the matrixH has pure
imaginary eigenvalues so that the matrix polynomial obtained after this transformation
has still one or more roots on the unit circle. In this case it is possible to apply a
second shift stage in order to improve the isolation ratio. The use of this double shift
technique provides quadratic convergence of CR and LR even in the critical cases
where Newton’s iteration converges linearly.

The algorithm has been implemented in the CR version both with the simple shift
and with the double shift technique, and compared with Newton’s iteration of [8] and
with the algorithm of [4] on the set of test problems of [5] and [1]. The computational
cost per step amounts to 34n3 + O(n2) arithmetic operations (ops) where we assume
for simplicitym = nwhereas the cost of Newton’s iteration amounts to 62n3 ops [8].
The number of steps needed by our algorithm is generally inferior to the number of
steps required by Newton’s iteration. In the null recurrent problems, whereH has two
null eigenvalues, Newton’s iteration has a linear convergence while CR still keeps
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a quadratic convergence if applied with the double shift. The approximation errors
provided by our method are generally inferior to the errors of the approximation
provided by Newton’s iteration.

The paper is organized as follows. After introducing some preliminary tools in
Section 2, we describe in Section 3 the reduction of an ARE to a unilateral quadratic
matrix equation. In Section 4 we introduce the main ideas, that is, the Cayley transform
and the shift technique, in order to arrive at a splitting with respect to the unit circle. In
Section 5 we deal with the computational details, in particular we recall the algorithm
of cyclic reduction, introduce the parametrization technique (scaling of the equation)
analyze the structure of the matrices generated by CR, describe the algorithm and
perform its complexity analysis. In Section 6 we report the results of our numerical
experiments.

2. Preliminaries

We denote by D< [resp. D�] the open [resp. closed] unit disk, and by D> [resp.
D�] the set of complex numbers outside the closed [resp. open] unit disk and the
point at infinity. Similarly we denote by C< [resp. C>] the open left [resp. right]
half plane of the complex plane and by C�, C� the closed ones, where we assume
that the point at infinity belongs both to C� and C�. We also denote by σ(A) the
set of the eigenvalues of the square matrix A and by e = (1, . . . , 1)T the vector with
all components 1. For a matrix polynomial A(z) we call roots of A(z) the zeros of
detA(z).

We are looking for a nonnegative solution S of the nonsymmetric algebraic Riccati
equation (2) that is minimal, in the sense of element-wise order. Any solution of this
kind is called minimal solution, whereas we use the expression spectral minimal
solution to denote a solution having minimal spectral radius.

In the case where the matrix M of (1) is an irreducible singular M-matrix, it was
shown by Guo [5, Theorem 3.1] that the algebraic Riccati equation has a nonnegative
solution S such that D − CS is an M-matrix, and then σ(−D + CS) ⊂ C�. Recall
that anM-matrix has only eigenvalues in C�. [17]. It is noted in [5] that this solution
S is minimal.

An almost general situation encountered in fluid queues models is the case where
Me = 0, in fact the infinitesimal generator of a continuous-time Markov chain has
this property [4,2].

In a more general setting the following result holds (see the discussions in [5],
particularly Theorem 4.7 and [6, Theorem 5]).

Theorem 1. For the irreducible singular M-matrix M, the matrix H has two real
eigenvalues 0 and λ∗, along with n− 1 eigenvalues in C< andm− 1 eigenvalues in
C>. Moreover, D − CS is an irreducible M-matrix which is singular if λ∗ � 0 and
is nonsingular if λ∗ < 0.
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3. Reduction to a quadratic unilateral equation

Given Eq. (2) define the matrices

M0 =
[

0 B

0 −D
]
, M1 =

[−A 0
C −I

]
, M2 =

[
I 0
0 0

]
, (5)

and consider the matrix polynomial F(z) = z2M2 + zM1 +M0.

Theorem 2. The matrix polynomial F(z) has m roots equal to 0, n roots at infinity,
and m+ n roots which are the eigenvalues of the matrix H defined in (4).

Proof. Since

F(z) =
[
z2I − zA B

zC −zI −D

]
=

[−zI + A B

−C −zI −D

] [−zI 0
0 I

]
then det F(z) = (−z)m det(K − zI) where K =

[
A B

−C −D
]

. The proof follows

since K is similar to H , and the dimension of ker(M2) is n. �

The location in the complex plane of the eigenvalues of H is fully character-
ized by Theorem 1. In particular, we may split the roots of F(z) into the two sets
�− ⊂ C< ∪ {0} and �+ ⊂ C> ∪ {0,∞}, both of cardinality m+ n, given by:

(1) if λ∗ < 0

�− = {λ ∈ σ(H) ∩ C<} ∪ {0 with multiplicity m} ∪ {λ∗},
�+ = {λ ∈ σ(H) ∩ C>} ∪ {∞ with multiplicity n} ∪ {0};

(2) if λ∗ � 0

�− = {λ ∈ σ(H) ∩ C<} ∪ {0 with multiplicity m+ 1},
�+ = {λ ∈ σ(H) ∩ C>} ∪ {∞ with multiplicity n} ∪ {λ∗}.

We may easily verify that if S is a solution of (2), then the matrix

G =
[

0 S

0 V

]
, (6)

where V = −D + CS, solves the unilateral equation

M2X
2 +M1X +M0 = 0. (7)

Therefore, from any solution S of the algebraic Riccati equation (2) we may construct
a solutionG of the unilateral equation. Conversely, ifG is a solution of (7) having the
block structure (6), then S solves the algebraic Riccati equation (2). Moreover, for the
block upper triangular structure ofG,G has as eigenvalues zero, with multiplicitym,
and the n eigenvalues of V . Under our assumptions, if S is the minimal nonnegative
solution of (2), then by Theorem 1 the matrix −V = D − CS is an irreducible M-
matrix which is singular if λ∗ � 0, nonsingular if λ∗ < 0. Since the eigenvalues
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of a (singular irreducible) M-matrix belong to C>(C> ∪ {0}) [17], and since the
eigenvalues of G must be roots of F(z) [9], we conclude that σ(G) = �−, i.e., G
is the solution whose eigenvalues are the “leftmost” roots of F(z) in the complex
plane. Therefore any algorithm for computing the solution G of (7) with “leftmost”
eigenvalues, provides the minimal nonnegative solution S of (2).

It is useful to remark that the equation

XCtX − AtX −XDt + Bt = 0, (8)

whereCt = tC,At = tA+ I,Dt = tD − I, Bt = tB, for t /= 0, shares its solutions
with the original equation (2). Applying the same technique we may reduce (8) to the
unilateral equation

M2X
2 +M1(t)X +M0(t) = 0, (9)

where

M0(t) =
[

0 Bt
0 −Dt

]
, M1(t) =

[−At 0
Ct −I

]
, M2 =

[
I 0
0 0

]
, (10)

whose solutions are

Gt =
[

0 S

0 Vt

]
,

where Vt = −Dt + CtS = I + t (−D + CS). Premultiplying (9) by the matrix[
1
2I 0
0 I

]
yields Eq. (3) found by Ramaswami [4]. In the case where M = (mi,j ) is an infini-
tesimal generator of a Markov chain, by using probabilistic arguments Ramaswami
has shown that for t � 1/µ, where µ = max1�i�m+n mii the matrix polynomial

Ft(z) = M0(t)+ zM1(t)+ z2M2 =
[
z2I − zAt Bt
zCt −zI −Dt

]
has m+ n roots in D� and m+ n roots in D�. In particular, for t � 1/µ, Vt has
eigenvalues inside the unit disk, and Gt is the solution with smallest spectral radius
of (9). In the following remark we show that this property can be proved also by
means of purely algebraic arguments.

Remark 3. Let M = (mij ) be an irreducible singular M-matrix such that Me = 0,
i.e., such that

∑
j mij = 0 for any i. Therefore

∑
j /=i |mij | = mii . This means that

the Gershgorin disks for the matrix M are all centered in mii and have radius mii ,
moreover the one corresponding to µ = maxi mii contains all the remaining disks
and therefore all the eigenvalues. By following the same arguments of the proof of
Theorem 2, we may verify that Ft(z) has m roots equal to 0, n roots at infinity, and

m+ n roots which are the eigenvalues of the matrixHt =
[−Dt Ct
−Bt At

]
. We observe
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that the Gershgorin disks for the matrix H are the same as the ones of M or they are
the disks ofM reflected with respect to the imaginary axis, so the whole spectrum of
H is contained in the two disks of center respectivelyµ and −µ and radiusµ. Now, to
transform this splitting of the eigenvalues ofH with respect to the imaginary axis into
a splitting of the eigenvalues ofHt with respect to the unit circle, it is enough to shrink
the disks and translate the point 0 to 1. This can be obtained by choosing t � 1/µ; in
particular, with this choice of t , the condition σ(−Dt + CtS) ⊂ D� holds, therefore
Gt is the solution with smallest spectral radius.

As pointed out in [1], the splitting of the roots ofFt(z)with respect to the unit circle
is a very important property, since it allows to apply efficient algorithms, like cyclic
reduction (CR) or logarithmic reduction (LR), for computing the minimal solution
Gt . For details on cyclic reduction (CR) or logarithmic reduction (LR) applied to
solve quadratic matrix equations we refer the reader to [10,11,16].

Unfortunately, the Ramaswami trick to achieve the splitting with respect to the
unit circle can be applied only if M is the infinitesimal generator of a Markov chain,
i.e.,M is a singularM-matrix such thatMe = 0. In the next section we will introduce
a technique to transform the unilateral equation (7) into a new univariate equation,
whose minimal spectral solution provides the desired matrix S, which works for a
general singular irreducible M-matrix.

4. Transforming the unilateral quadratic equation

In this section, first we apply the Cayley transform to the matrix polynomial F(z)
and obtain a new polynomial R(z) having a splitting of the roots with respect to the
unit circle. Then we introduce the shift technique in order to shift to zero and to
infinity the roots of R(z) which belong to the unit circle. After this manipulation we
obtain a new matrix polynomial ψ(z) with m+ n roots of modulus less than 1 and
m+ n roots with modulus greater than 1. The matrix equation associated with this
polynomial has a spectral minimal solution which provides the minimal solution of
the original algebraic Riccati equation. Due to the splitting of the spectrum, one can
apply fast algorithms like cyclic reduction or logarithmic reduction for computing the
solution of this univariate quadratic equation.

4.1. Cayley transform

The Cayley transform

z → 1 + z

1 − z
, (11)

defined on the Riemann sphere, maps the open left [resp. right] half plane inside
[resp. outside] the unit disk and maps the imaginary axis into the unit circle. Its
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inverse is given by z−1
z+1 . This transform can be applied formally to matrices and to

matrix polynomials. In particular, for

R(z) = (1 + z)2F

(
z− 1

z+ 1

)
,

we have R(z) = R0 + zR1 + z2R2 where

R0 = M0 −M1 +M2,

R1 = 2(M0 −M2),

R2 = M0 +M1 +M2.

We have the following.

Theorem 4. The matrix polynomialR(z) hasm roots equal to 1, n roots equal to −1
and m+ n roots equal to µi = (1 + λi)/(1 − λi), for i = 1, . . . , m+ n, where λi
are the eigenvalues of the matrix H of (4), and where we assume µi = ∞ if λi = 1
for some i. Moreover, the set K of the roots of det((1 + z)H + (1 − z)I ) has n− 1
elements in D<, m− 1 elements in D>, one element equal to 1 and one element
equal to µ∗ = (1 + λ∗)(1 − λ∗)−1, where λ∗ is defined in Theorem 1.

Proof. The result follows from the proof of Theorem 2 and from the relation

detR(z) = (1 + z)2(m+n) det F
(
z−1
z+1

)
. �

From the above theorem we deduce that the roots of R(z) can be split into the two
sets �− ⊂ D< ∪ {1} and �+ ⊂ D> ∪ {−1, 1}, both of cardinality m+ n, given by

(1) if λ∗ < 0,

�− = {λ ∈ K ∩ D<} ∪ {1 with multiplicity m} ∪ {µ∗},
�+ = {λ ∈ K ∩ D>} ∪ {−1 with multiplicity n} ∪ {1};

(2) if λ∗ � 0,

�− = {λ ∈ K ∩ D<} ∪ {1 with multiplicity m+ 1},
�+ = {λ ∈ K ∩ D>} ∪ {−1 with multiplicity n} ∪ {µ∗}.

We may easily verify that the matrix

T = (I +G)(I −G)−1 =
[
I 2S(I − V )−1

0 (I + V )(I − V )−1

]
(12)

obtained by applying the Cayley tranform (11) to the matrix G of (6), solves the
unilateral equation

R0 + R1X + R2X
2 = 0 (13)

associated with the matrix polynomial R(z). Moreover, the m+ n eigenvalues
of T are given by 1, counted with multiplicity m, and by the n eigenvalues of
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(I + V )(I − V )−1. Assuming that S is the minimal nonnegative solution of (2),
the eigenvalues of (I + V )(I − V )−1 belong to the open [resp. closed] unit disk if
the eigenvalues of V belong to C< [resp. C< ∪ {0}]. In light of the results of Section
3, the eigenvalues of V belong to C< if λ∗ < 0, they belong to C< ∪ {0} if λ∗ � 0.
In both cases, since the eigenvalues of T must be roots of R(z) [9], we conclude that
σ(T ) = �−, i.e., T is a solution whose eigenvalues are the smallest moduli roots of
R(z). In particular, from the matrix T we may recover the matrix V and the matrix S
which define G.

In this way we have reduced the problem of computing G to the problem of
computing T . Unfortunately, the matrix T is not necessarily the unique solution of
(13) with smallest spectral radius since the matrix polynomial R(z) has more than
m+ n roots in the closed unit disk and m+ n of them have modulus 1.

For computational reasons it would be important to transform the matrix polyno-
mial R(z) into a new one for which there exists unique the solution of the associated
matrix equation having the smallest spectral radius. This will be achieved in the next
subsection, by moving the undesired roots equal to 1 and to −1 by means of the shift
technique to zero and to infinity, respectively.

4.2. Shifting techniques

In this section we apply the shift technique of [14–16] in order to construct a new
matrix polynomial ψ(z) having the same roots of R(z) except for m roots equal to 1
and n roots equal to −1 which are moved to zero and to the infinity, respectively.

Ifλ∗ /= 0, the quadratic matrix equation associated withψ(z) has a unique minimal
spectral solution, from which we may recover the matrixG of (6). If λ∗ = 0 the matrix
polynomialψ(z) still has a root equal to 1 so that we have to apply once again the shift
technique in order to arrive at a matrix equation having a unique minimal spectral
solution. We briefly recall the shift technique, then we apply it for achieving the
desired transformation. For more details we refer the reader to [14–16].

Consider the quadratic matrix polynomial α(z) = z2A2 + zA1 + A0, let λ /= 0 be
a simple root of α(z) and let v be a nonzero vector such that α(λ)v = 0. Choose

any vector u such that u
T

v = 1, and define the “shifted” function β(z) = α(z)(I −
z−1λvu

T
)−1. Thenβ(z) is the quadratic matrix polynomialβ(z) = z2B2 + zB1 + B0,

where
B2 = A2,

B1 = A1 + λA2vu
T
,

B0 = A0 − A0vu
T
.

(14)

Moreover, the following properties hold:

(1) ifW is a solution of the equation A2X
2 + A1X + A0 = 0 such thatWv = λv,

then Y = W − λvu
T

is a solution of the equation B2X
2 + B1X + B0 = 0, and

Y v = 0;
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(2) the roots of β(z) concide with the roots of α(z), except for λ, which is shifted
to zero;

(3) if α(z) can be factored as α(z) = (I − zR)U(zI −W), then β(z) can be fac-
tored as β(z) = (I − zR)U(zI − Y ); in other words, if R solves the ma-
trix equation X2A0 +XA1 + A2 = 0, then R solves also the matrix equation
X2B0 +XB1 + B2 = 0.

If we wish to shift the root λ to infinity, instead of to zero, it is sufficient to
consider the reversed matrix polynomial αr(z) = A2 + zA1 + z2A0 whose roots are
the reciprocal of the roots of α(z) (where we assume that 1/∞ = 0 and 1/0 = ∞),
so that λ−1 is a simple root of αr(z). We perform a shift of the root λ−1 to 0 in
the polynomial αr(z), thus obtaining the “shifted” polynomial βr(z) = αr(z)(I −
z−1λ−1vu

T
)−1. By reverting again the polynomial βr(z) we obtain the polynomial

β(z) = α(z)(I − zλ−1vu
T
)−1 such that the roots of β(z) concide with the roots of

α(z), except for λ, which is shifted to infinity.
Now, we apply the above shift technique first to move to zero m roots of R(z)

equal to 1, and then to move to infinity n roots of R(z) equal to −1.
We observe that 1 is a root of R(z) of multiplicitym and that the dimension of the

null space of R(1) is m; more precisely since

R(1) =
[

0 4B
0 −4D

]
,

the kernel of R(1) is generated by the columns of the matrix

[
I

0

]
, where I is the

m×m identity matrix. By proceeding as in [14–16] we may easily verify that

R̂(z)= R(z)

(
I − z−1

[
I

0

] [
I 0

])−1

=
[

0 B

0 I −D

]
+ z

[−I − A 2B
C −2D

]
+ z2

[
I − A B

C −I −D

]
and that the matrix

T̂ = T −
[
I

0

] [
I 0

] =
[

0 2S(I − V )−1

0 (I + V )(I − V )−1

]
solves the equation R̂0 + R̂1T̂ + R̂2T̂

2 = 0 where R̂(z) = R̂0 + R̂1z+ R̂2z
2.

Recall that R̂(z) has the same roots of R(z) except for m roots equal to 1 which
are replaced by 0 in R̂(z), therefore R̂(z) still has n roots equal to −1. Now we want
to apply the shift technique in order to arrive at a quadratic matrix polynomial ϕ(z)
which shares with R̂(z) all the roots, except for the roots equal to −1, which are
moved to infinity.

Differently from the previous shift, where the solution T of the matrix equation
associated withR(z) is transformed into the matrix T̂ which solves the matrix equation



484 D.A. Bini et al. / Linear Algebra and its Applications 413 (2006) 474–494

associated with R̂(z), now we want to perform a shift such that T̂ is still a solution
of the matrix equation associated with ϕ(z). In order to obtain this, in light of the
properties summarized at the beginning of this section, it is sufficient to multiply R̂(z)
on the left, instead of on the right, by the suitable matrix function which performs the
shift of the roots. More specifically, we observe that

R̂(−1) =
[

2I 0
0 0

]
so that the rows of the matrix [0 I ], where I is the identity matrix of size n, span
the left null space of R̂(−1). Therefore, by proceeding as in [14–16] we may easily
verify that

ϕ(z)=
(
I + z

[
0
I

] [
0 I

])−1

R̂(z)

=
[

0 B

0 I −D

]
+ z

[−I − A 2B
C −I −D

]
+ z2

[
I − A B

0 0

]
(15)

has m+ n− 1 roots in D< (of which m are zero), m+ n− 1 in D> (of which n are
at infinity), one root equal to 1 and the root µ∗ = (1 + λ∗)/(1 − λ∗).

We have three cases:

• µ∗ belongs to D< and then the matrix polynomial ϕ(z) has m+ n roots in D<

(which are the eigenvalues of the matrix T̂ ) and m+ n eigenvalues in D> ∪ {1};
therefore, the matrix T̂ is the unique minimal spectral solution of the equation
associated with ϕ(z).

• µ∗ belongs to D> and then ϕ(z) has m+ n roots in D< ∪ {1} (which are the
eigenvalues of the matrix T̂ ) and m+ n eigenvalues in D>; therefore, the matrix
T̂ is the unique minimal spectral solution of the equation associated with ϕ(z).

• µ∗ = 1 and then ϕ(z) has m+ n roots in D< ∪ {1} (which are the eigenvalues
of the matrix T̂ ) and m+ n eigenvalues in D> ∪ {1}; therefore, the matrix T̂ is a
minimal spectral solution of the equation associated with ϕ(z).

From the above properties, we deduce that, ifµ∗ /= 1 then T̂ is the unique minimal
spectral solution of the matrix equation. Therefore we may apply fast algorithms, like
cyclic reduction or logarithmic reduction, in order to compute T̂ . Once we have
computed the matrix T̂ , which has the structure

T̂ =
[

0 X

0 Y

]
,

from the equations X = 2S(I − V )−1 and Y = (I + V )(I − V )−1, we may recover
S = X(I + Y )−1.

In the critical case where µ∗ = 1 we have to apply a further shift in order to
move one of the two unit roots of ϕ(z) to zero. For simplicity, we consider the case
encountered in practice where M is a singular M-matrix such that Me = 0. In this
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case Guo [5] has shown that, if Me = 0 and µ∗ = 1, then Se = e. Moreover, it is

easy to verify that the vector v =
[
e 1

2 e
]T

is such that T̂ v = v. Therefore, choosing

u
T =

[
0 2

n
e

T
]

we have u
T

v = 1, [I 0]u = 0, i.e., v is orthogonal to the null space

of R(1) so that we may apply the shift technique to move the root 1 to zero. In this

way, denoting by Enn = eu
T

, if e ∈ Rn and by Emn = eu
T

, if e ∈ Rm, we obtain the
new matrix polynomial

ψ(z)= ϕ(z)

(
I − z−1

[
e
1
2 e

]
u

T
)−1

= z2
[
I − A B

0 0

]
+ z

[−I − A 2B + 1
n
(2Emn − BEnn)

C −I −D

]
+

[
0 B(1 − 1

n
Enn)

0 (I −D)(I − 1
n
Enn)

]
, (16)

which has the same roots of ϕ(z) except for the root 1 which is moved to 0. In this
way the matrix

W = T̂ − uv
T =

[
0 2S(I − V )−1 − 2

n
ee

T

0 (I + V )(I − V )−1 − 1
n

ee
T

]
(17)

is the minimal spectral solution of the matrix equation associated with ψ(z).

Remark 5. It is important to remark that the same argument can be applied to the
case |µ∗| > 1, when Me = 0, which corresponds to a positive recurrent stochastic
process. In this case the shift does not change the order of convergence, that is still
quadratic, but reduces the number of steps necessary to approximate the solution to
a specific accuracy.

5. Implementative details

In order to solve the unilateral quadratic equation in a fast and efficient way, we
apply the logarithmic reduction and cyclic reduction algorithms, that converge to a
solution having minimal spectral radius (if it exists). The convergence is quadratic if
there is a gap between the modulus of the (n+m)th and the (n+m+ 1)st root of
the associated matrix polynomial, ordered by increasing modulus, i.e., if the isolation
ratio ξ is less than 1. This gap is a measure of the speed of the convergence as stated
by the following result which describes cyclic reduction algorithm [18].

Theorem 6. Given the unilateral quadratic matrix equation N2X
2 +N1X +N0 =

0,whereN2, N1, N0 ∈ Rh×h, setN(0)
2 = N2, N

(0)
1 = N1, N

(0)
0 = N0, N̂1 = N1, and

for i = 0, 1, . . . , define
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(CR iteration)



N
(i+1)
1 = N

(i)
1 −N

(i)
2 (N

(i)
1 )−1N

(i)
0

−N(i)
0 (N

(i)
1 )−1N

(i)
2 ,

N
(i+1)
2 = −N(i)

2 (N
(i)
1 )−1N

(i)
2 ,

N
(i+1)
0 = −N(i)

0 (N
(i)
1 )−1N

(i)
0 ,

N̂
(i+1)
1 = N̂

(i)
1 −N

(i)
2 (N

(i)
1 )−1N

(i)
0 ,

(18)

where we assume det(N(i)
1 ) /= 0. If the quadratic matrix equations N2X

2 +N1X +
N0 = 0 and N0Y

2 +N1Y +N2 = 0 have spectral minimal solutions X and Y with
ρ(X) < 1 and ρ(Y ) < 1, then X is such that X = X(i) + O(τ 2i ) where X(i) =
−(N̂ (i)

1 )−1N0, and τ is any real number less than 1 and greater than |λh/λh+1| where
λ1, . . . , λ2h are the roots of N2λ

2 +N1λ+N0 ordered by nondecreasing modulus,
where we assume zeros at infinity if N2 is rank deficient.

Observe that the existence of the minimal spectral solutions X and Y in the above
theorem implies that the roots of the matrix polynomials N2z

2 +N1z+N0 and
N0z

2 +N1z+N2 have a splitting with respect to the unit circle. When τ = 1 the
convergence of X(i) to X turns to linear or in certain cases it does not occur, in these
situations the shift technique provides an effective tool for removing this drawback.
Let us rewrite the unilateral quadratic matrix equation that we obtain with the shift
technique: in the case of a simple shift from (15) we have[

I − A B

0 0

]
Z2 +

[−I − A 2B
C −I −D

]
Z +

[
0 B

0 I −D

]
= 0, (19)

whose minimal solution

Z =
[

0 X

0 Y

]
allows us to recover the minimal solution of the algebraic Riccati equation by the
simple formula S = X(I + Y )−1.

In the case of double shift, from (16) we obtain the matrix equation[
I − A B

0 0

]
Z2 +

[−I − A 2B + 1
n
(2Emn − BEnn)

C −I −D

]
Z

+
[

0 B(1 − 1
n
Emn)

0 (I −D)(I − 1
n
Enn)

]
= 0 (20)

and from its minimal spectral solution W in (17) we obtain

X = W1,2 + 2

n
ee

T
, Y = W2,2 + 1

n
ee

T
, (21)

where W is partitioned into the four blocks Wi,j , i, j = 1, 2, so that we may write
S = X(I + Y )−1.
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5.1. Scaling

Instead of applying CR directly to Eqs. (19) and (20), it is more convenient to
perform a simple formal manipulation which allows us to introduce a parameter. The
choice of the parameter can be tuned in order to optimize the numerical performance of
the algorithms that we obtain in this way. In fact, from the numerical point of view the
two crucial points are the Cayley transform and the matrix inversions during the CR
algorithms. The potential numerical instability of the Cayley transform may appear
in the formula S = X(I + Y )−1, if I + Y is ill-conditioned. So, for the stability
of the algorithm it is important that the matrix I + Y is well conditioned. Since
I + Y = I + (I + V )(I − V )−1 = 2(I − V )−1, the matrix I + Y is ill-conditioned
if I − V = I +D − CS is ill-conditioned. Recalling thatD − CS is anM-matrix so
that its eigenvalues are in C�, one obtains that the matrix I − V is always nonsingular
and is well conditioned if V ≈ 0.

Using the straightforward fact that if

G =
[

0 S

0 V

]
solves Eq. (5), namelyM2G

2 +M1G+M0 = 0, then F = G/γ solves γ 2M2F
2 +

γM1F +M0 = 0, we obtain a slightly different equation[
γ 2I − γA B

0 0

]
Z2 +

[−γ 2I − γA 2B
γC −γ I −D

]
Z +

[
0 B

0 γ I −D

]
= 0,

(22)

whose minimal solution is

Z =
[

0 Xγ
0 Yγ

]
and the matrix S can be recovered by the formula S = γXγ (I + Yγ )

−1, so that
I + Yγ = (I − V/γ )−1. As γ tends to infinity, the condition number of I + Yγ tends
to 1, so, in principle, choosing a large value for γ gives the better conditioning of the
matrix. However, the drawback in choosing a large γ is that cyclic reduction slows
down its convergence speed.

A heuristic value that in our numerical tests has given a good performance is
γ̄ = max1�i�n+m mii , where mii are the diagonal entries of the matrix M .

By different arguments one can obtain diverse parameterizations of Eq. (19). For
instance, if we divide the algebraic Riccati equation by a parameter γ we obtain[

I − νA νB

0 0

]
Z2 +

[−I − νA 2νB
νC −I − νD

]
Z +

[
0 νB

0 I − νD

]
= 0,

(23)

with ν = 1/γ and S = Xν(I + Yν)
−1. As in the previous parametrization, large val-

ues of γ reduce the ill conditioning of the matrix I + Y .
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Similarly, we may parametrize Eq. (20) obtained by means of a double shift and
arrive at the following equation:[

I − νA νB

0 0

]
Z2 +

[−I − νA 2νB + 1
n
(2Emn − νBEnn)

νC −I − νD

]
Z

+
[

0 νB(1 − 1
n
Emn)

0 (I − νD)(I − 1
n
Enn)

]
= 0. (24)

5.2. Structure of the blocks

It is interesting to observe that both Eqs. (22) and (24) have matrix coefficients
with a special structure which can be used for reducing the computational cost of
cyclic reduction.

More precisely, since in the cyclic reduction algorithm we have

N
(0)
2 =

[∗ ∗
0 0

]
, N

(0)
1 =

[∗ ∗
∗ ∗

]
, N

(0)
0 =

[
0 ∗
0 ∗

]
,

then at each step all the matrices N(i)
2 , N

(i)
1 and N(i)

0 share the same structure of

N
(0)
2 , N(0)

1 and N(0)
0 , respectively. Let us describe a single step of CR. For the sake

of notational simplicity let us denote by N2, N1, N̂1 and N0 the matrices obtained at
a generic step of CR and by N ′

2, N ′
1, N̂ ′

1 and N ′
0 the matrices obtained after one step

of CR applied to N2, N1, N̂1 and N0. Denote

N2 =
[
P1 P2

0 0

]
, N1 =

[
M1,1 M1,2

M2,1 M2,2

]
, N̂1 =

[
M̂1,1 M̂1,2

M̂2,1 M̂2,2

]
,

N0 =
[

0 Q1

0 Q2

]
, N−1

1 =
[
U1,1 U1,2

U2,1 U2,2

]
(25)

and similarly do for N ′
2, N ′

1, N̂ ′
1 and N ′

0. Then, form Theorem 6 we obtain that

P ′
1 = −H1P1, P ′

2 = −H1P2

Q′
1 = −Q1K1, Q′

2 = −Q2K1

M̂ ′
1,1 = M̂1,1 −H1Q1 − L1Q2, M̂ ′

1,2 = M̂1,2,

M̂ ′
2,1 = M̂2,1, M̂ ′

2,2 = M̂2,2,

M ′
1,1 = M̂ ′

1,1 − R1P1,

M ′
1,2 = M̂ ′

1,2 − R1P2,

M ′
2,1 = M̂ ′

2,1 − S1P1,

M ′
2,2 = M̂ ′

2,2 − S1P2,

(26)
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where

H1 = P1U1,1 + P2U2,1,

L1 = P1U1,2 + P2U2,2,

K1 = U2,1Q1 + U2,2Q2,

R1 = Q1U2,1, S1 = Q2U2,1.

(27)

For m = n, the above relations allow one to implement the CR step with the
computational cost of 18 multiplications of n× n matrices and with the inversion
of a 2n× 2n matrix. Since the cost of a matrix multiplication amounts to 2n3 − n2

arithmetic operations (ops) and the inversion of a 2n× 2n matrix amounts to 2(2n)3

ops, we arrive at the overal cost of 34n3 + O(n2) ops for a single step of CR. This
complexity bound compares favourably with the complexity of Newton’s iteration
which is 62n3 ops [8].

Algorithm 1. CR for solving nonsymmetric algebraic Riccati equations.

• Input: the coefficients A,B,C,D of the algebraic Riccati equation, a parameter
γ > 0, a small positive number ε.

• Consider the matrix equation (22) and fromA,B,C,D construct its matrix coeffi-
cients M2,M1 and M0. Initialize cyclic reduction with N

(0)
2 = M2, N

(0)
1 =

M1, N
(0)
0 = M0 and N̂ (0)

1 = M1.

• While ‖N(i)
2 ‖ � ε and ‖N(i)

0 ‖ � ε perform a step of cyclic reduction, as described
in general form in Eqs. (26) and (27).

• Compute T = −(N̂ (i+1)
1 )−1N

(0)
0 .

• Output: S = γ T12(I + T22)
−1 the minimal solution of the algebraic Riccati equa-

tion, where T12 = [T ]i=1,m;j=m+1,m+n and T22 = [T ]i,j=m+1,m+n.

We recall that one can consider Eq. (23) and apply to it the cyclic reduction
algorithm. With this parametrization the required solution is recovered by the formula
S = T12(I + T22)

−1.
In the case of null recurrent stochastic processes, where linear convergence occurs,

or in the case of positive recurrent proceses, to increase convergence speed it is
convenient to consider Eq. (16) instead of (19) in order to apply the double shift.
Observe that the algorithm is essentially the same except for the initial conditions,
because the unilateral equation has the same structure with zero blocks. In practice it
is preferable to consider the parametrized equation (24). The only difference, besides
the initial assignment for N(0)

2 , N(0)
1 , N̂ (0)

1 , and N(0)
0 , is the way of recovering the

solution at the end of the CR stage, by means of the expression T = −(N̂ (i+1)
1 )−1K0,

where

K0 =
[

0 νB

0 I − νD

]
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is the last term of the equation with the simple shift. In this case the solution can be
written as S = T12(I + T22)

−1, as before. The validity of this formula can be derived
from [16]. We denote by Algorithm 2 the modification of Algorithm 1 performed
along this lines for implementing the double shift.

6. Numerical experiments

We have tested our algorithms and compared them with some other methods using
the test problems of [5] and [1]. The numerical experiments have been performed in
Matlab 6.0, the code is available from the authors upon request. The residual error
that we report in the tables is given by

res = ‖XCX −XD − AX + B‖
‖XCX‖ + ‖XD‖ + ‖AX‖ + ‖B‖ ,

where X is the computed approximation to a solution. Here and throughout this
section ‖ · ‖ denotes the 1-norm.

The first test is taken from [5].

Test 1 [5, Example 6.1]. Consider a pseudo random n× n matrix R with no zero
elements and set W = diag(Re)− R so that W is an irreducible singular M-matrix.
Introduce a real parameter α and let

M = αI +W =
[
D −C

−B A

]

be the matrix defining the coefficients of the algebraic Riccati equation. The existence
of a positive solution of (2) is guaranteed for α � 0. For α = 0 and for different values
of n, Table 1 reports the number of steps and the relative residual of our algorithm
1 in the case where scaling is applied with the values γ = maxmii and γ = 1 (no
scaling), we make a comparison with cyclic reduction applied to the equation derived
by Ramaswami (CRR) with the choice t = 1/maxi mi,i [4]. To reduce effect of

Table 1
Number of steps and relative residual for test 1

n γ = 1 γ = maxmii CRR
iter res iter res iter res

10 8 3.1 × 10−13 10 2.0 × 10−16 11 1.4 × 10−16

20 9 3.1 × 10−12 11 3.1 × 10−16 12 1.9 × 10−16

50 11 2.2 × 10−10 12 4.4 × 10−16 13 2.5 × 10−16

100 12 5.4 × 10−8 12 8.6 × 10−16 13 3.0 × 10−16
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randomness, we run our algorithms 10 times and put on the table the worst residual
and the rounded average number of steps. Cyclic reduction with scaling shows a good
accuracy and convergence rate.

The next four tests are taken from [1] where Newton’s iteration is compared with
several fixed point methods (FP) and with the algorithm CRR and LRR obtained
by applying cyclic reduction and logarithmic reduction to the unilateral equation (3)
derived by Ramaswami [4]. The performances of CRR and LRR are very similar
therefore we report only the ones of CRR.

Test 2 [1, Example 1]. Consider the algebraic Riccati equation associated with the
M-matrix

M =


0.003 −0.001 −0.001 −0.001

−0.001 0.003 −0.001 −0.001
−0.001 −0.001 0.003 −0.001
−0.001 −0.001 −0.001 0.003

 .
It easy to check that the matrixS = 1

2 ee
T

is a solution of the algebraic Riccati equation,
and with a bit more work it can be proved that it is the minimal nonnegative solution.

In this case the associated stochastic process is null-recurrent and the FP methods
considered in [1] require so many iterations that it is impractical to use them for
their sublinear convergence [1]. Both Newton’s iteration and our algorithm 1 have
a linear convergence and need a large number of steps in order to provide a reason-
able approximation. Because of the shift technique, our algorithm 2 has a quadratic
convergence. Table 2 reports the number of step for Newton’s method, algorithm 1
and algorithm 2, together with the residual error and the relative error ‖Ŝ − S‖/‖S‖,
where Ŝ is the computed approximation to the solution S. For all the methods we
stopped the iteration when the residual ceased to decrease. In both Algorithms 1 and
2, we have chosen for the parameter γ the value maxi mii . It is important to point
out that our algorithm 2 (with the double shift) provides an approximation with full
accuracy in just one step.

Table 2
Comparison of methods for test 2

Newton Alg 1 Alg 2 CRR

iter 25 25 1 29
res 8.7 × 10−17 4.3 × 10−17 8.7 × 10−17 4.3 × 10−17

err 3.0 × 10−8 2.3 × 10−8 1.7 × 10−16 1.2 × 10−8
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Table 3
Comparison of methods for test 3

Newton Alg 1 Alg 2 CRR

iter 5 18 1 19
res 4.6 × 10−13 1.4 × 10−12 8.7 × 10−17 3.1 × 10−13

err 5.0 × 10−13 1.2 × 10−13 1.9 × 10−15 7.0 × 10−13

Test 3 [1, Example 2]. For the Riccati equation associated with the M-matrix

M =


0.003 −0.001 −0.001 −0.001

−0.001 0.003 −0.001 −0.001
−0.001 −0.001 100.002 −100
−0.001 −0.001 −100 100.002

 ,
the results are similar to the previous example. In fact, the associated stochastic process
is still null-recurrent. Our algorithm 1 requires 34 iterations to converge, more than in
the previous case, Newton’s method requires 18 iteration, but algorithm 2 converges
again in 1 step with a relative error of 1.4 × 10−16, much less than the other methods.

Test 4 [1, Example 3]. Let m = 2, n = 18, and let all the off-diagonal entries of A
be zero, all entries of B and C be equal to −0.001 and all off-diagonal entries of A
be equal to 10. The remaining entries are such that Me = e. The minimal solution
is a rectangular m× n matrix with all entries equal to 1/18. This example models a
strongly positive recurrent process for which there is no need of performing a complete
shift, but by Remark 5 it can be performed to improve the convergence, as reported
in Table 3. As before we stopped the algorithms when residual ceased to decrease.

Test 5 [1, Example 4]. Let m = n = 2 and

A =
[

0.003 −0.0001
−0.0001 0.003

]
, D =

[
0.003 0

0 0.003

]
,

C =
[

0.0019 0.001
0.0019 0.001

]
, B =

[
0.0015 0.0015
0.0029 0.0001

]
.

In this case the associated stochastic process is weakly transient and the minimal

nonnegative solution is S =
[

19
30

1
3

19
30

1
3

]
.

For this test the FP methods still require a large number of iterations, whereas
Newton’s iteration and CRR require about 10 steps for a residual error of the order
10−17. A residual of the same order is obtained by Algorithm 1 in 9 steps. Applying
Algorithm 2 with the complete shift provides convergence in one step to a stochastic
solution different from the wanted solution S that is substochastic. In fact, the process
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is transient and shifting the root 1 to zero alters the balancing of the eigenvalues with
respect the unit circle.

Appendix A. The symmetric equation

It is worth to point out that the above reduction of a Riccati equation to a unilat-
eral equation applies in any case, even in the very important case of the symmetric
algebraic Riccati equations that arise in control theory [13]

XDX + ATX +XA− C = 0, (A.1)

where the matrices D and C are real symmetric and each matrix in the equation is
square. In the applications the required solution is the stabilizing one, i.e., the solution
X such that σ(A+DX) ⊂ C<.

For symmetric algebraic Riccati equations the matrix H is the well-known Ham-
iltonian matrix

H =
[
A D

C −AT

]
,

which in most applications has no purely imaginary eigenvalues and satisfies the
property of splitting with respect to the imaginary axis, in fact half of its eigenvalues
are in C< and the other half in C>. This allows one to apply the same reduction that
we used for the nonsymmetric equations.

The main difference is that after the simple shift we obtain an equation with a pure
splitting with respect to the unit disk and then the convergence is quadratic.

The equation after the shifts is[
γ 2I + γAT −C

0 0

]
Z2 +

[−γ 2I + γAT −2C
γD −γ I + A

]
Z

+
[

0 −C
0 γ I + A

]
= 0, (A.2)

which can be solved with the algorithm described in Section 5. A good choice for the

parameter is γ = | det(H)| 1
2n .

The resulting algorithm provided a good accuracy in many tests, even if its com-
putational cost is greater than the one of other solvers for symmetric algebraic Riccati
equations. This topic is still under investigation.
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